Fast k-Nearest Neighbors Classifier with shrinkage estimator for the class membership probabilities
fastknn
?The fastknn
is now available on Kaggle. Take a look at this kernel to see an example on how to use fastknn
to improve your performance on Kaggle competitions.
"dist"
estimator.Give it a try and let me know what you think!
The fastknn
method implements a k-Nearest Neighbor (KNN) classifier based on the ANN library. ANN is written in C++
and is able to find the k nearest neighbors for every point in a given dataset in O(N log N)
time. The package RANN provides an easy interface to use ANN library in R
.
The fastknn
was developed to deal with very large datasets (> 100k rows) and is ideal to Kaggle competitions. It can be about 50x faster then the popular knn
method from the R
package class, for large datasets. Moreover, fastknn
provides a shrinkage estimator to the class membership probabilities, based on the inverse distances of the nearest neighbors (see the equations on fastknn website):
\[ P(x_i \in y_j) = \displaystyle\frac{\displaystyle\sum\limits_{k=1}^K \left( \frac{1}{d_{ik}}\cdot(n_{ik} \in y_j) \right)}{\displaystyle\sum\limits_{k=1}^K \left( \frac{1}{d_{ik}} \right)} \]
where \(x_i\) is the \(i^{\text{th}}\) test instance, \(y_j\) is the \(j^{\text{th}}\) unique class label, \(n_{ik}\) is the \(k^{\text{th}}\) nearest neighbor of \(x_i\), and \(d_{ik}\) is the distance between \(x_i\) and \(n_{ik}\). This estimator can be thought of as a weighted voting rule, where those neighbors that are more close to \(x_i\) will have more influence on predicting \(x_i\)’s label.
In general, the weighted estimator provides more calibrated probabilities when compared with the traditional estimator based on the label proportions of the nearest neighbors, and reduces logarithmic loss (log-loss).
fastknn
?The package fastknn
is not on CRAN, so you need to install it directly from GitHub:
library("devtools")
install_github("davpinto/fastknn")
The base of fastknn
is the RANN
package, but other packages are required to make fastknn
work properly. All of them are automatically installed when you install the fastknn
.
RANN
for fast nearest neighbors searching,foreach
and doSNOW
to do parallelized cross-validation,Metrics
to measure classification performance,matrixStats
for fast matrix column-wise and row-wise statistics,ggplot2
to plot classification decision boundaries,viridis
for modern color palletes.Using fastknn
is as simple as:
## Load packages
library("fastknn")
library("caTools")
## Load toy data
data("chess", package = "fastknn")
## Split data for training and test
set.seed(123)
tr.idx <- which(caTools::sample.split(Y = chess$y, SplitRatio = 0.7))
x.tr <- chess$x[tr.idx, ]
x.te <- chess$x[-tr.idx, ]
y.tr <- chess$y[tr.idx]
y.te <- chess$y[-tr.idx]
## Fit KNN
yhat <- fastknn(x.tr, y.tr, x.te, k = 10)
## Evaluate model on test set
sprintf("Accuracy: %.2f", 100 * (1 - classLoss(actual = y.te, predicted = yhat$class)))
## [1] "Accuracy: 97.67"
The fastknn
provides a interface to select the best k
using n-fold cross-validation. There are 4 possible loss functions:
eval.metric = "overall_error"
eval.metric = "mean_error"
eval.metric = "auc"
eval.metric = "logloss"
Cross-validation using the voting probability estimator:
## Load dataset
library("mlbench")
data("Sonar", package = "mlbench")
x <- data.matrix(Sonar[, -61])
y <- Sonar$Class
## 5-fold CV using log-loss as evaluation metric
set.seed(123)
cv.out <- fastknnCV(x, y, k = 3:15, method = "vote", folds = 5, eval.metric = "logloss")
cv.out$cv_table
fold_1 | fold_2 | fold_3 | fold_4 | fold_5 | mean | k |
---|---|---|---|---|---|---|
2.638 | 3.629 | 2.721 | 1.895 | 0.9809 | 2.373 | 3 |
1.139 | 2.079 | 2.789 | 1.104 | 0.2251 | 1.467 | 4 |
1.203 | 1.304 | 2.791 | 1.133 | 0.315 | 1.349 | 5 |
0.5285 | 1.333 | 2.011 | 1.198 | 0.358 | 1.086 | 6 |
0.5567 | 0.5874 | 2.031 | 1.244 | 0.3923 | 0.9622 | 7 |
0.5657 | 0.593 | 2.058 | 1.244 | 0.417 | 0.9755 | 8 |
0.5502 | 0.6228 | 1.286 | 0.4712 | 0.4478 | 0.6757 | 9 |
0.5864 | 0.6344 | 0.5025 | 0.4843 | 0.4854 | 0.5386 | 10 |
0.5975 | 0.6518 | 0.5116 | 0.4765 | 0.5134 | 0.5502 | 11 |
0.6059 | 0.6543 | 0.5022 | 0.4897 | 0.5383 | 0.5581 | 12 |
0.5996 | 0.6642 | 0.5212 | 0.5132 | 0.566 | 0.5728 | 13 |
0.6114 | 0.6572 | 0.5283 | 0.5242 | 0.5882 | 0.5819 | 14 |
0.6163 | 0.6416 | 0.5416 | 0.5449 | 0.5959 | 0.5881 | 15 |
Cross-validation using the weighted voting probability estimator:
## 5-fold CV using log-loss as evaluation metric
set.seed(123)
cv.out <- fastknnCV(x, y, k = 3:15, method = "dist", folds = 5, eval.metric = "logloss")
cv.out$cv_table
fold_1 | fold_2 | fold_3 | fold_4 | fold_5 | mean | k |
---|---|---|---|---|---|---|
2.626 | 3.608 | 2.707 | 1.891 | 0.9645 | 2.359 | 3 |
1.111 | 2.052 | 2.766 | 1.094 | 0.1965 | 1.444 | 4 |
1.15 | 1.263 | 2.766 | 1.112 | 0.2682 | 1.312 | 5 |
0.4569 | 1.288 | 1.987 | 1.165 | 0.2946 | 1.038 | 6 |
0.4715 | 0.5304 | 1.999 | 1.199 | 0.3192 | 0.9039 | 7 |
0.4786 | 0.5315 | 2.022 | 1.2 | 0.3391 | 0.9142 | 8 |
0.4628 | 0.5587 | 1.246 | 0.4257 | 0.3636 | 0.6114 | 9 |
0.4918 | 0.5664 | 0.4651 | 0.4357 | 0.3912 | 0.47 | 10 |
0.5002 | 0.5783 | 0.4686 | 0.427 | 0.415 | 0.4778 | 11 |
0.5101 | 0.5768 | 0.4625 | 0.4367 | 0.4386 | 0.485 | 12 |
0.503 | 0.5861 | 0.4765 | 0.4542 | 0.4626 | 0.4965 | 13 |
0.5116 | 0.5794 | 0.4826 | 0.4663 | 0.4836 | 0.5047 | 14 |
0.5194 | 0.5742 | 0.4938 | 0.4842 | 0.4926 | 0.5128 | 15 |
Note that the mean log-loss for the weighted voting estimator is lower for every k
evaluated.
Parallelization is available. You can specify the number of threads via nthread
parameter.
The fastknn
provides a plotting function, based on ggplot2
, to draw bi-dimensional decision boundaries. If your dataset has more than 2 variables, only the first two will be considered. In future versions of fastknn
the most descriptive variables will be selected automatically beforehand, using a feature ranking technique.
## Load toy data
data("spirals", package = "fastknn")
## Split data for training and test
set.seed(123)
tr.idx <- which(caTools::sample.split(Y = spirals$y, SplitRatio = 0.7))
x.tr <- spirals$x[tr.idx, ]
x.te <- spirals$x[-tr.idx, ]
y.tr <- spirals$y[tr.idx]
y.te <- spirals$y[-tr.idx]
## Plot decision boundary
knnDecision(x.tr, y.tr, x.te, y.te, k = 15)
## Load toy data
data("multi_spirals", package = "fastknn")
## Split data for training and test
set.seed(123)
tr.idx <- which(caTools::sample.split(Y = multi_spirals$y, SplitRatio = 0.7))
x.tr <- multi_spirals$x[tr.idx, ]
x.te <- multi_spirals$x[-tr.idx, ]
y.tr <- multi_spirals$y[tr.idx]
y.te <- multi_spirals$y[-tr.idx]
## Plot decision boundary
knnDecision(x.tr, y.tr, x.te, y.te, k = 15)
Here we test the performance of fastknn
on the Covertype datset. It is hosted on UCI repository and has been already used in a Kaggle competition. The dataset contains 581012 observations on 54 numeric features, classified into 7 different categories.
All experiments were conducted on a 64-bit Ubuntu 16.04 with Intel Core i7-6700HQ 2.60GHz and 16GB RAM DDR4.
Here fastknn
is compared with the knn
method from the package class
. We had to use small samples from the Covertype data because knn
takes too much time (> 1500s) to fit the entire dataset.
#### Load packages
library('class')
library('fastknn')
library('caTools')
#### Load data
data("covertype", package = "fastknn")
covertype$Target <- as.factor(covertype$Target)
#### Test with different sample sizes
N <- nrow(covertype)
sample.frac <- c(10e3, 15e3, 20e3)/N
res <- lapply(sample.frac, function(frac, dt) {
## Reduce datset
set.seed(123)
sample.idx <- which(sample.split(dt$Target, SplitRatio = frac))
x <- as.matrix(dt[sample.idx, -55])
y <- dt$Target[sample.idx]
## Split data
set.seed(123)
tr.idx <- which(sample.split(y, SplitRatio = 0.7))
x.tr <- x[tr.idx, ]
x.te <- x[-tr.idx, ]
y.tr <- y[tr.idx]
y.te <- y[-tr.idx]
## Measure time
t1 <- system.time({
yhat1 <- knn(train = x.tr, test = x.te, cl = y.tr, k = 10, prob = TRUE)
})
t2 <- system.time({
yhat2 <- fastknn(xtr = x.tr, ytr = y.tr, xte = x.te, k = 10, method = "dist")
})
## Return
list(
method = c('knn', 'fastknn'),
nobs = as.integer(rep(N*frac, 2)),
time_sec = c(t1[3], t2[3]),
accuracy = round(100 * c(sum(yhat1 == y.te), sum(yhat2$class == y.te)) / length(y.te), 2)
)
}, dt = covertype)
res <- do.call('rbind.data.frame', res)
res
method | nobs | time_sec | accuracy |
---|---|---|---|
knn | 10000 | 1.172 | 73.38 |
fastknn | 10000 | 0.149 | 77.04 |
knn | 15000 | 2.676 | 73.71 |
fastknn | 15000 | 0.181 | 76.82 |
knn | 20000 | 6.481 | 76.38 |
fastknn | 20000 | 0.211 | 80.37 |
The fastknn
takes about 5s to fit the entire dataset.
We compared the voting
estimator with the weighted voting
estimator:
Voting
#### Extract input variables and response variable
x <- as.matrix(covertype[, -55])
y <- as.factor(covertype$Target)
#### 5-fold cross-validation
set.seed(123)
res <- fastknnCV(x, y, k = 10, method = "vote", folds = 5, eval.metric = "logloss")
res$cv_table
fold_1 | fold_2 | fold_3 | fold_4 | fold_5 | mean | k |
---|---|---|---|---|---|---|
0.6081 | 0.5524 | 0.5643 | 0.5682 | 0.6528 | 0.5892 | 10 |
Weighted Voting
#### 5-fold cross-validation
set.seed(123)
res <- fastknnCV(x, y, k = 10, method = "dist", folds = 5, eval.metric = "logloss")
res$cv_table
fold_1 | fold_2 | fold_3 | fold_4 | fold_5 | mean | k |
---|---|---|---|---|---|---|
0.5586 | 0.5039 | 0.5176 | 0.5181 | 0.604 | 0.5404 | 10 |
The fastknn provides a function to do feature extraction using KNN. It generates k * c
new features, where c
is the number of class labels. The new features are computed from the distances between the observations and their k
nearest neighbors inside each class. The following example shows that the KNN features carry information that can not be extracted from data by a linear learner, like a GLM model:
library("mlbench")
library("caTools")
library("fastknn")
library("glmnet")
#### Load data
data("Ionosphere", package = "mlbench")
x <- data.matrix(subset(Ionosphere, select = -Class))
y <- Ionosphere$Class
#### Remove near zero variance columns
x <- x[, -c(1,2)]
#### Split data
set.seed(123)
tr.idx <- which(sample.split(Y = y, SplitRatio = 0.7))
x.tr <- x[tr.idx,]
x.te <- x[-tr.idx,]
y.tr <- y[tr.idx]
y.te <- y[-tr.idx]
#### GLM with original features
glm <- glmnet(x = x.tr, y = y.tr, family = "binomial", lambda = 0)
yhat <- drop(predict(glm, x.te, type = "class"))
yhat1 <- factor(yhat, levels = levels(y.tr))
#### Generate KNN features
set.seed(123)
new.data <- knnExtract(xtr = x.tr, ytr = y.tr, xte = x.te, k = 3)
#### GLM with KNN features
glm <- glmnet(x = new.data$new.tr, y = y.tr, family = "binomial", lambda = 0)
yhat <- drop(predict(glm, new.data$new.te, type = "class"))
yhat2 <- factor(yhat, levels = levels(y.tr))
#### Performance
sprintf("Accuracy: %.2f", 100 * (1 - classLoss(actual = y.te, predicted = yhat1)))
sprintf("Accuracy: %.2f", 100 * (1 - classLoss(actual = y.te, predicted = yhat2)))
## [1] "Accuracy: 83.81"
## [1] "Accuracy: 95.24"
We can see that the KNN features improved a lot the classification performance of the GLM model.
The knnExtract()
function is based on the ideas presented in the
winner solution of the Otto Group Product Classification Challenge on Kaggle.
Parallelization is available. You can specify the number of threads via nthread
parameter.
KNN makes a nonlinear mapping of the original space and project it into a linear one, in which the classes are linearly separable.
Mapping the chess dataset
library("caTools")
library("fastknn")
library("ggplot2")
library("gridExtra")
## Load data
data("chess")
x <- data.matrix(chess$x)
y <- chess$y
## Split data
set.seed(123)
tr.idx <- which(sample.split(Y = y, SplitRatio = 0.7))
x.tr <- x[tr.idx,]
x.te <- x[-tr.idx,]
y.tr <- y[tr.idx]
y.te <- y[-tr.idx]
## Feature extraction with KNN
set.seed(123)
new.data <- knnExtract(x.tr, y.tr, x.te, k = 1)
## Decision boundaries
g1 <- knnDecision(x.tr, y.tr, x.te, y.te, k = 10) +
labs(title = "Original Features")
g2 <- knnDecision(new.data$new.tr, y.tr, new.data$new.te, y.te, k = 10) +
labs(title = "KNN Features")
grid.arrange(g1, g2, ncol = 2)
Mapping the spirals dataset
## Load data
data("spirals")
x <- data.matrix(spirals$x)
y <- spirals$y
## Split data
set.seed(123)
tr.idx <- which(sample.split(Y = y, SplitRatio = 0.7))
x.tr <- x[tr.idx,]
x.te <- x[-tr.idx,]
y.tr <- y[tr.idx]
y.te <- y[-tr.idx]
## Feature extraction with KNN
set.seed(123)
new.data <- knnExtract(x.tr, y.tr, x.te, k = 1)
## Decision boundaries
g1 <- knnDecision(x.tr, y.tr, x.te, y.te, k = 10) +
labs(title = "Original Features")
g2 <- knnDecision(new.data$new.tr, y.tr, new.data$new.te, y.te, k = 10) +
labs(title = "KNN Features")
grid.arrange(g1, g2, ncol = 2)